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a b s t r a c t

This paper considers a multivariate extension of the test for neglected nonlinearity proposed by Tsay
(1986) that uses principal components to overcome the problem of dimensionality that is common with
tests of this type.Monte Carlo experiments reveal that themodifiedmultivariate test provides a significant
dimensional reduction without suffering from any systematic level distortion or power loss, and is more
powerful than univariate nonlinearity tests.
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1. Introduction

Recent years have witnessed a growing interest in tests for ne-
glected nonlinearity in time series models (see, e.g., Tong, 1990;
Teräsvirta et al., 2010). Such tests have become an essential first
step in model-building exercises since, due to the difficulties as-
sociated with the statistical analysis of nonlinear models, it is of-
ten desirable to establish the adequacy or otherwise of a linear
data representation before exploring more complicated nonlinear
structures.

Although much of the relevant literature has focused on uni-
variatemodels, there are situations inwhich relationships between
two or more time series may have a nonlinear structure. In such
cases it is reasonable to expect that more powerful inference pro-
cedures may be obtained by considering tests for neglected non-
linearity in multivariate instead of univariate models. A test of this
type was considered by Harvill and Ray (1999), who developed a
multivariate generalization of the nonlinearity test proposed by
Tsay (1986) and Luukkonen et al. (1988). A practical difficulty with
the application of such a test to real-world data is the large number
of terms required to construct the relevant artificial test regression.
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The inclusion of these terms may induce substantial collinearity
and necessitates the use of relatively long time series for the effec-
tive implementation of the test.

The present paper offers a way of overcoming these difficulties
by introducing amultivariate test for neglected nonlinearitywhich
achieves a reduction in the dimension of the set of relevant test
variables through the use of principal components. The modified
multivariate test is straightforward to construct and provides a sig-
nificant dimensional reductionwithout suffering fromany system-
atic level distortion or power loss relative to the original test. This
makes the modified test quite attractive for applications in which
relatively long stretches of datamay not be available, as is often the
case, for example, in macroeconometrics. What is more, as Harvill
and Ray (1999) also observed, multivariate tests are generally con-
siderably more powerful than univariate tests applied to the com-
ponents of a nonlinear multiple time series, suggesting that there
are clear advantages to testing the component series jointly rather
than individually.

The tests to be considered are described in Section 2. A simula-
tion study of the properties of the tests is presented in Section 3.
Section 4 summarizes and concludes.

2. Tests for neglected nonlinearity

Consider the vector autoregressive (VAR) model for a k-variate
time series {xt} given by

xt = µ +

p
j=1

Ajxt−j + ut , t = 0, ±1, ±2, . . . , (1)
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where p > 1 is a fixed integer,µ is a k×1 vector of real constants,Aj
(j = 1, . . . , p) are k× kmatrices of real constants, and {ut} is a se-
quence of independent, identically distributed k-dimensional real
random vectors with E(ut) = 0, detE(utu′

t) ≠ 0, and E(∥ut∥
4)

< ∞. It is also assumed that det(Ik−
p

j=1 Ajz j) ≠ 0 for all complex
z such that |z| 6 1, where Ik denotes the identity matrix of order
k. Under these assumptions the VAR equations (1) have a unique
causal, stationary and ergodic solution. The assumptions are also
sufficient for the least-squares estimator of the parameters of the
model to be consistent and asymptotically normal (e.g., Lütkepohl,
2005, Sec. 3.2.2). We are interested in testing the hypothesis that
there is no neglected nonlinearity in (1).

Given a sample (x−p+1, . . . , x0, x1, . . . , xT ), the test for ne-
glected nonlinearity considered by Harvill and Ray (1999) may be
implemented as a test for the hypothesis B2 = 0 in the auxiliary
multivariate regression

ût = b0 + B1vt + B2wt + ηt , t = 1, 2, . . . , T , (2)

where ût is the k × 1 vector of least-squares residuals from (1), vt
is the kp × 1 vector defined as vt = (x′

t−1, . . . , x
′
t−p)

′,wt is the
1
2kp(kp + 1) × 1 vector defined as wt = vech(vtv ′

t), (b0, B1, B2)
are artificial parameters, and ηt is an artificial error term. Putting
m =

1
2kp(kp+ 1), the linearity hypothesis is rejected for large val-

ues of the likelihood-ratio statistic

ΛHR = (T − τ)(ln det S0 − ln det S1), (3)

where S1 and S0 are the least-squares residual sum of squares ma-
trices from (2) with B2 unrestricted and B2 = 0, respectively, and
τ = kp+

1
2 (k+m+3) is Bartlett’s correction factor (see Anderson,

2003, Sec. 8.5.2). When {xt} satisfies (1), ΛHR has an approximate
χ2
km distribution for large T .1
An obvious difficulty with the application of a nonlinearity test

based on (3) in practice is the large dimensionm of the squares and
cross-products vectorwt . As a result, relatively long time series are
required for the implementation of the test procedure. In addition,
the components of wt are likely to be highly collinear, something
which can have adverse effects on the finite-sample performance
of the test.

We argue that the dimensionality and collinearity problems
may be effectively alleviated by the use of principal components.
Specifically, we suggest replacing wt in (2) by the n-dimensional
vector yt = (Y1t , . . . , Ynt)

′, 1 6 n 6 m, consisting of the first n
sample principal components of wt . Letting λ1 > · · · > λm denote
the eigenvalues of the sample correlation matrix of (w1, . . . ,wT ),
the ith principal component is computed as Yit = ξ′

iw
∗
t (i =

1, . . . ,m), where ξi is the normalized eigenvector associated with
λi andw∗

t is the standardized version ofwt . A test for nonlinearity
may then be implemented as a test for the hypothesis C2 = 0 in
the auxiliary multivariate regression

ût = c0 + C1vt + C2yt + εt , t = 1, 2, . . . , T , (4)

where (c0, C1, C2) are artificial parameters and εt is an artificial er-
ror term. Linearity is thus rejected for large values of the likelihood-
ratio statistic

ΛPC = (T − τ̄ )(ln det S0 − ln det S2), (5)

where τ̄ = kp +
1
2 (k + n + 3) and S2 is the least-squares residual

sum of squares matrix from (4). For large T , ΛPC may be approxi-
mately treated as χ2

kn under the null hypothesis that {xt} satisfies
the linear model (1).

In addition to the dimensional reduction achieved by trans-
forming into principal components, the collinearity problem

1 Note that Harvill and Ray (1999) use a test criterion based on an F-
approximation to Wilks’ lambda statistic (det S1/ det S0) instead of ΛHR .
associatedwith the use ofwt is effectively eliminated since sample
principal components are uncorrelated. A decision, however, needs
to be made in the implementation of the test based on ΛPC on the
number of principal components to be used. Among the various
methods available in the literature, the following rules for select-
ing n are popular in applied work and are used in the sequel2:
R1: n is the smallest integer such that m−1 n

i=1 λi > 0.95
(proportion-of-variance rule);

R2: n is the smallest integer such that λn+1 6 λ̃ for some prespec-
ified λ̃ > 0; following a recommendation of Jolliffe (1972), we
set λ̃ = 0.7 (average-root rule);

R3: n is the smallest integer such that λn+1 6 m−1 m
i=n+1 i

−1

(broken-stick rule).

It is finally worth remarking that the test procedures based on
criteria like those in (3) and (5) may be easily modified to allow
for a VARMA or VARMAX structure under the null hypothesis of
linearity (cf. Harvill and Ray, 1999). Furthermore, the finite-order
VAR model used in the construction of the tests may be viewed as
only an approximation to a potentially infinite-order VAR struc-
ture for {xt}. Asymptotic justification of inference procedures in
this case requires that the order of the VARmodel fitted to the data
increases, at some appropriate rate, simultaneously with the sam-
ple size (cf. Lütkepohl, 2005, Ch. 15).

3. Monte Carlo simulations

To assess the finite-sample properties of the tests based on the
statistics in (3) and (5), we carry out some Monte Carlo experi-
ments.We consider bivariate time series {xt} satisfying the follow-
ing models:
M1:

xt =


0.4 0
0 0.4


xt−1 +


0.3 0
0 0.3


xt−2 + ut

M2:

xt =


0.4 0.3
0.3 0.4


xt−1 + ut

M3:

xt =


0.4 −0.3

−0.3 0.4


xt−1 + ut

N1:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


0.10 −0.05

−0.05 0.10


× (xt−1 ◦ ut−1) + ut

N2:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


−0.05 0.10
0.10 −0.05


× (xt−1 ◦ ut−1) + ut

N3:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


0.0 0.1
0.1 0.0


(xt−1 ◦ xt−1) + ut

N4:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


−0.05 0.10
0.10 −0.05


× (xt−1 ◦ xt−1) + ut

2 For a detailed discussion of these rules the reader is referred to Jolliffe (2002,
Ch. 6).
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Table 1
Rejection frequencies of tests (linear time series).

Test T = 200 T = 500
M1 M2 M3 M1 M2 M3

σ12 = 0 ΛHR 0.044 0.038 0.042 0.048 0.051 0.042
ΛPC(R1) 0.041 0.042 0.037 0.045 0.055 0.047
ΛPC(R2) 0.042 0.042 0.037 0.052 0.056 0.042
ΛPC(R3) 0.046 0.046 0.040 0.047 0.059 0.044
ΛHR(1) 0.039 0.049 0.045 0.046 0.058 0.054
ΛHR(2) 0.047 0.051 0.046 0.046 0.055 0.062

σ12 = 0.5 ΛHR 0.061 0.041 0.052 0.062 0.042 0.045
ΛPC(R1) 0.060 0.040 0.054 0.058 0.038 0.050
ΛPC(R2) 0.056 0.044 0.052 0.061 0.038 0.052
ΛPC(R3) 0.064 0.042 0.055 0.056 0.042 0.052
ΛHR(1) 0.042 0.044 0.044 0.040 0.059 0.061
ΛHR(2) 0.040 0.058 0.044 0.042 0.048 0.062
Table 2
Rejection frequencies of tests (nonlinear time series).

Test T = 200 T = 500
N1 N2 N3 N4 N5 N6 N7 N1 N2 N3 N4 N5 N6 N7

σ12 = 0 ΛHR 0.35 0.39 0.76 0.87 0.46 1.00 1.00 0.86 0.89 0.99 1.00 0.88 1.00 1.00
ΛPC(R1) 0.36 0.37 0.77 0.87 0.46 1.00 1.00 0.82 0.84 0.99 1.00 0.88 1.00 1.00
ΛPC(R2) 0.32 0.36 0.77 0.87 0.46 1.00 1.00 0.79 0.80 1.00 1.00 0.87 1.00 1.00
ΛPC(R3) 0.37 0.38 0.77 0.88 0.46 1.00 1.00 0.86 0.89 1.00 1.00 0.88 1.00 1.00
ΛHR(1) 0.33 0.11 0.04 0.17 0.10 1.00 1.00 0.69 0.25 0.05 0.32 0.20 1.00 0.99
ΛHR(2) 0.23 0.08 0.05 0.18 0.09 0.30 0.19 0.60 0.19 0.04 0.35 0.21 0.52 0.93

σ12 = 0.5 ΛHR 0.60 0.57 0.80 0.95 0.22 1.00 1.00 0.97 0.97 1.00 1.00 0.54 1.00 1.00
ΛPC(R1) 0.54 0.53 0.79 0.92 0.20 1.00 1.00 0.94 0.95 0.99 0.99 0.52 1.00 1.00
ΛPC(R2) 0.49 0.48 0.81 0.95 0.21 1.00 1.00 0.90 0.92 0.99 1.00 0.55 1.00 1.00
ΛPC(R3) 0.60 0.58 0.80 0.96 0.20 1.00 1.00 0.98 0.98 1.00 1.00 0.54 1.00 1.00
ΛHR(1) 0.36 0.14 0.07 0.14 0.07 0.99 1.00 0.67 0.26 0.09 0.31 0.14 1.00 1.00
ΛHR(2) 0.23 0.08 0.07 0.16 0.08 0.96 0.34 0.58 0.18 0.08 0.35 0.14 1.00 1.00
N5:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


0.1 0.0
0.1 0.0


× (xt−1 ◦ Pxt−1) + ut

N6:

xt =


0.7 0.0
0.3 0.7


xt−1I(e′

1xt−1 6 0)

+


−0.7 0.0
−0.3 −0.7


xt−1I(e′

1xt−1 > 0) + ut

N7:

xt =


0.7 0.0
0.3 0.7


xt−1{1 − G(e′

1xt−1)}

+


−0.7 0.0
−0.3 −0.7


xt−1G(e′

1xt−1) + ut .

Here, {ut} are independent, Gaussian, two-dimensional random
vectors having zero mean and covariance matrix 6 = (σij), with
σ11 = σ22 = 1 and σ12 ∈ {0, 0.5}, P is a permutation matrix de-
fined as P = (e2, e1), where ei (i = 1, 2) is the ith column of I2, I(·)
is the indicator function, G(·) is the logistic distribution function
given by G(z) = (1 + e−z)−1, and ◦ signifies element-wise multi-
plication.M1–M3 are linear VARmodels, N1–N2 are vector bilinear
models, N3–N5 are nonlinear VAR models, N6 is a threshold VAR
model, and N7 is a smooth-transition VAR model.3

In the experiments, 1000 independent artificial time series of
length T + 100, with T ∈ {200, 500}, are generated from each of

3 Note that the chosen parameter values ensure stationarity. The maximum-
over-sum procedure discussed in Embrechts et al. (1997, Sec. 6.2.6) indicates that
the nonlinear time series have finite fourth moments.
the models above. The first 100 data points of each series are then
discarded in order to eliminate start-up effects, and the remaining
T data points are used to implement the multivariate nonlinearity
tests based on the statisticsΛHR andΛPC. In addition, we also carry
out a univariate variant of the test based on ΛHR applied to the
two components of xt ; these tests are denoted in the sequel by
ΛHR(1) and ΛHR(2). In either case, the order of the autoregressive
models fitted to the data is determined by means of the Bayesian
criterion of Schwarz (1978), with the maximum order allowed set
equal to the integer part of 8(T/100)1/4. For the test based on ΛPC,
the number of principal components used is selected according to
the rules R1, R2 and R3 stated in Section 2; the resulting tests are
denoted by ΛPC(R1), ΛPC(R2) and ΛPC(R3), respectively.4

The Monte Carlo rejection frequencies of tests of nominal level
0.05 are reported in Tables 1 and2,while Table 3 shows thenumber
of original nonlinear terms (m) and principal components (n) used
in the test regressions (averaged across Monte Carlo replications).
The results reveal the following:

(i) For most design points, both the multivariate and univariate
tests have empirical levels which do not differ significantly
from the nominal 0.05 level. A small level distortion is ob-
served in some cases, but even then the distortion is not of a
magnitude that makes the tests unattractive for applications.

(ii) The multivariate tests are highly successful in detecting ne-
glected nonlinearity in the larger of the two sample sizes
considered, the only exception being the case of time series
satisfying N5 with σ12 =

1
2 . The tests are also very successful

4 In addition to principal components obtained from the classical Pearson
correlationmatrix of (w1, . . . ,wT ), we also considered principal components based
on the Spearman rank correlation matrix. Since no significant differences in the
properties of the resulting tests were observed, we only report results based on the
Pearson correlation matrix.
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Table 3
Average number of nonlinear terms and principal components.

Test T = 200 T = 500
M1 M2 M3 N1 N2 N3 N4 N5 N6 N7 M1 M2 M3 N1 N2 N3 N4 N5 N6 N7

σ12 = 0 ΛHR 11.1 5.7 5.6 11.1 11.0 4.2 4.4 5.9 4.5 3.9 10.6 8.1 8.1 12.9 12.6 4.6 5.4 8.2 4.7 4.3
ΛPC(R1) 7.1 3.7 3.7 8.0 8.1 2.8 2.9 3.9 3.0 2.7 6.9 5.5 5.5 9.6 9.4 3.2 3.7 5.5 3.2 2.0
ΛPC(R2) 5.9 3.0 3.0 5.9 5.9 2.8 2.6 3.1 2.6 3.0 6.0 3.6 3.6 6.5 6.5 3.0 2.8 3.7 2.5 1.9
ΛPC(R3) 8.2 4.1 4.0 9.4 9.3 3.3 3.2 4.3 3.2 3.4 7.6 6.0 6.0 11.5 11.3 3.7 3.9 6.0 3.4 2.6

σ12 = 0.5 ΛHR 11.3 4.5 5.3 11.4 11.5 4.5 4.9 5.0 4.5 3.8 10.6 5.3 7.2 13.8 14.2 5.0 6.1 7.2 4.4 4.1
ΛPC(R1) 6.4 1.7 3.5 8.4 8.5 2.9 3.2 3.3 1.9 2.7 6.2 2.0 4.9 10.3 10.5 3.4 4.2 4.8 1.8 1.9
ΛPC(R2) 4.5 1.7 3.5 7.1 7.2 3.1 3.5 3.4 1.8 3.0 3.9 2.0 4.5 8.5 8.8 3.4 4.2 4.5 1.7 1.8
ΛPC(R3) 7.5 2.2 4.1 10.1 10.1 3.4 4.0 3.8 2.6 3.4 7.3 2.5 5.6 12.4 12.8 3.9 5.2 5.5 2.5 2.5
for shorter time series, particularly those satisfying N3, N4, N6
and N7. Except for the case of N5, tests tend to have higher
power when σ12 ≠ 0.

(iii) There appear to be no systematic and significant differences in
the rejection frequencies of themultivariate test based onΛHR
and those based on ΛPC. Furthermore, tests based on ΛPC are
insensitive with respect to the rule used to select the number
of principal components. Rule R3 appears to have a small ad-
vantage over R1 and R2 in terms of test power in some cases,
although even then the differences across the three rules are
extremely small. While all three rules achieve a dimensional
reduction relative to the original test regression, R2 generally
results in a smaller number of principal components being se-
lected.

(iv) The multivariate tests based on ΛHR and ΛPC have a signifi-
cant advantage over the univariate ΛHR(1) and ΛHR(2) tests.
The differences in power are particularly prominent for time
series satisfying N2, N3, N4 and N5; in these cases, univariate
tests applied to individual time series have very little power
to detect nonlinearity.

4. Conclusion

This paper has considered a test for neglected nonlinearity in
multivariate time series which achieves a reduction in the dimen-
sion of the set of relevant test variables through the use of prin-
cipal components. Monte Carlo experiments have revealed that
principal components provide a simple and effective way of over-
coming dimensionality and multicollinearity difficulties, with the
resulting tests displaying no systematic level distortion or power
loss relative to the original test considered by Harvill and Ray
(1999). The simulation experiments have also revealed that, in a
multivariate context, there are considerable advantages to testing
for joint nonlinearity since univariate tests applied to individual
components of a multiple time series may lack power to detect a
nonlinear structure.
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